
An Efficient
Computer Algebra System

for Python

Pearu Peterson
pearu.peterson@gmail.com

Laboratory of Systems Biology, Institute of Cybernetics, Estonia
Simula Research Laboratory, Norway

• Introduction
• Design criteria
• Sympycore architecture

– Implementation notes
– Handling infinities

• Performance comparisons
• Conclusions

SIAM Conference on Computational Science and Engineering
March 2-6, 2009

Miami, Florida

1. Introduction
What is CAS?

Computer Algebra System (CAS) is a software program that
facilitates symbolic mathematics.
The core functionality of a CAS is manipulation of
mathematical expressions in symbolic form.

[Wikipedia]

Our aim — provide a package to manipulate mathematical
expressions within a Python program.

Target applications — code generation for numerical applications,
arbitrary precision computations, etc in Python.

Existing tools — Wikipedia lists more than 40 CAS-es:
• commercial/free,
• full-featured programs/problem specific libraries,
• in-house, C, C++, Haskell, Java, Lisp, etc programming

languages.
from core functionality to a fully-featured system

Possible approaches
• wrap existing CAS libraries to Python:

swiginac[GPL] (SWIG, GiNaC, 2008), PyGiNaC[GPL]
(Boost.Python, GiNaC, 2006), SAGE[GPL] (NTL, Pari/GP,
libSingular, etc.)
• create interfaces to CAS programs:

Pythonica (Mathematica, 2004), SAGE[GPL] (Maxima, Axiom,
Maple, Mathematica, MuPAD, etc.)
• write a CAS package from scratch:

Sympy[BSD], Sympycore[BSD], Pymbolic[?] (2008),
PySymbolic[LGPL] (2000), etc

2. Design criteria
Symbolic expressions in silica . . .
• memory efficient representation
• memory and CPU efficient manipulation
• support variety of mathematical concepts — algebraic approach
• extensibility is crucial — from core to fully-featured system
• separate core implementation details from library algorithms

Symbolic expressions
• atomic expressions — symbols, numbers
• composite expressions — unevaluated operations
• multiple representations possible

Representation of symbolic expressions consists of . . .
• Data structures to store operands
• Methods/functions to interpret data structures
• Classes to define algebraic properties

For example, x * y can be represented as

Ring(MUL, [x, y])

or as
CommutativeRing(BASE_EXP_DICT, {x: 1, y: 1})

3. Sympycore architecture
• Symbolic expressions are instances of Algebra subclasses.
• An Algebra instance holds pair of head and data parts:

〈Algebra〉(〈head part〉, 〈data part〉)

• The 〈head〉 part holds operation methods.
• The 〈data〉 part holds operands.
• The 〈Algebra〉 class defines valid operation methods like __mul__,
__add__, etc. that apply the corresponding operation methods
(in 〈head〉) to operands (in 〈data〉).

3.1. Atomic heads
SYMBOL — data is arbitrary object (usually a string), 〈Algebra〉

instance represents any element of the corresponding algebraic
structure:
x = Algebra(SYMBOL, ’x’)

NUMBER — data is numeric object, 〈Algebra〉 instance represents a
concrete element of the corresponding algebraic structure:

r = Algebra(NUMBER, 3.14)

3.2. Arithmetic heads

ADD — data is a list of operands to unevaluated addition operation:
Ring(ADD, [x, y]) -> x + y

MUL — data is a list of operands to unevaluated multiplication
operation: Ring(MUL, [x, y]) -> x * y

POW — data is a tuple of base and exponent:
Ring(POW, (x, y)) -> x ** y

TERM COEFF — data is a tuple of symbolic term and numeric
coefficient: Ring(TERM_COEFF, (x, 2)) -> 2 * x

TERM COEFF DICT — data is a dictionary of term-coefficient
pairs: Ring(TERM_COEFF_DICT, {x: 2, y: 3}) -> 2*x + 3*y

BASE EXP DICT — data is a dictionary of base-exponent pairs:
CommutativeRing(BASE_EXP_DICT, {x: 2, y: 3})
-> x**2 * y**3

EXP COEFF DICT — data contains polynomial symbols and a
dictionary of exponents-coefficient pairs:
Ring(EXP_COEFF_DICT, Pair((x, y), {(2,0): 3, (5,6): 7}))
-> 3*x**2 + 7*x**5*y**6

3.3. Other heads

NEG, POS, SUB, DIV, MOD — verbatim arithmetic heads:
Ring(SUB, [x, y, z]) -> x - y - z

INVERT, BOR, BXOR, BAND, LSHIFT, RSHIFT — binary heads
LT, LE, GT, GE, EQ, NE — relational heads:

Logic(LT, (x, y)) -> x < y

NOT, AND, OR, XOR, EQUIV, IMPLIES, IS, IN — logic
heads: Logic(OR, (x, y)) -> x or y

APPLY, SUBSCRIPT, LAMBDA, ATTR, KWARG — functional
heads: Ring(Apply, (f, (x, y))) -> f(x, y)

SPECIAL, CALLABLE — special heads
MATRIX — sparse matrix heads
UNION, INTERSECTION, SETMINUS — set heads
TUPLE, LIST, DICT — container heads
. . .

3.4. Algebra classes
Expr
Algebra

Verbatim
Ring
CommutativeRing
Calculus
Unit

FunctionRing
MatrixRing

Logic
Set
...

3.5. Examples
> from sympycore import *
> x,y,z=map(Calculus,’xyz’)
> 3*x+y+x/2
Calculus(’y + 7/2*x’)
> (x+y)**2
Calculus(’(y + x)**2’)
> ((x+y)**2).expand()
Calculus(’2*y*x + x**2 + y**2’)

>>> from sympycore.physics import meter
>>> x*meter+2*meter
Unit(’(x + 2)*m’)

>>> f = Function(’f’)
>>> f+sin
FunctionRing_Calc_to_Calc(’Sin + f’)
>>> (f+sin)(x)
Calculus(’Sin(x) + f(x)’)

>>> m=Matrix([[1,2], [3,4]])
>>> print m.inv() * m
1 0
0 1
>>> print m.A * m
1 4
9 16

>>> Logic(’x>1 and a and x>1’)
Logic(’a and x>1’)

4. Implementation notes
Circular imports — modules implement initialization functions that

are called when all subpackages are imported to initialize any
module objects

Immutability of composites containing mutable types —
〈Expr instance〉.is_writable — True if hash is not computed yet.

hash(〈dict〉) = hash(frozenset(〈dict〉.items()))
hash(〈list〉) = hash(tuple(〈list〉))

Equality tests 〈Expr〉.as_lowlevel() — used in hash computations
and in equality tests.

>>> Calculus(TERM_COEFF_DICT, {}).as_lowlevel()
0
>>> Calculus(TERM_COEFF_DICT, {x:1}).as_lowlevel()
Calculus(’x’)
>>> Calculus(TERM_COEFF_DICT, {x:1, y:1}).as_lowlevel()
(TERM_COEFF_DICT, {Calculus(’x’): 1, Calculus(’y’): 1})

5. Infinity problems
In most computer algebra systems handling infinities is
inconsistent:
2*x*infinity -> x*infinity

but
x*infinity + x*infinity -> 2*x*infinity.

expand((x + 2)*infinity) -> infinity + x*infinity

incorrect if x=-1.

5.1. Sympycore Infinity

Sympycore defines Infinity object to represent extended
numbers such as directional infinities and undefined symbols in a
consistent way.

Definition: Infinity(d) = limr→∞(r × d), d ∈ C
Operations with finite numbers:

Infinity(d) < op > n = limr→∞(r × d < op > n)
Operations with infinite numbers:
Infinity(d1) < op >Infinity(d2) = limr1→∞,r2→∞(r1 × d1 < op > r2 × d2)

>>> oo = Infinity(1)
>>> x*oo - x*oo
Infinity(Calculus(’EqualArg(x, -x)*x’))

always correctly evaluates to undefined=Infinity(0).

>>> x*oo + y
Infinity(Calculus(’x*(1 + (EqualArg(x, y) - 1)*IsUnbounded(y))’))

Performance comparisons

6. Conclusions
• Sympycore — a research project, its aim is to seek out new

high-performance solutions to represent and manipulate
symbolic expressions in Python language
• — fastest Python based CAS core implementation
• — uses algebraic approach, supporting various mathematical

concepts is equally easy

http://sympycore.google.com
Pearu Peterson

Fredrik Johansson

	Introduction
	Design criteria
	Sympycore architecture
	Atomic heads
	Arithmetic heads
	Other heads
	Algebra classes
	Examples

	Implementation notes
	Infinity problems
	Sympycore Infinity

	Conclusions

