Software Design for PDEs on GPUs

Matthew Knepley

Computation Institute
University of Chicago
Department of Molecular Biology and Physiology
Rush University Medical Center

Advanced Algorithms on GPUs
SIAM Conference on Computational Science and Engineering
Reno, Feb. 28, 2011
Collaborators

Chicago Automated Scientific Computing Group:

- **Prof. Ridgway Scott**
 - Dept. of Computer Science, University of Chicago
 - Dept. of Mathematics, University of Chicago

- **Peter Brune**, (biological DFT)
 - Dept. of Computer Science, University of Chicago

- **Dr. Andy Terrel**, (Rheagen)
 - Dept. of Computer Science and TACC, University of Texas at Austin
The **PetscGPU** team:

- **Dr. Barry Smith**
 - Mathematics and Computer Science Division, ANL
- **Satish Balay**
 - Mathematics and Computer Science Division, ANL
- **Victor Minden**
 - Dept. of Mathematics, Tufts University
Collaborators

The PyLith Team:

- Dr. Brad Aagaard (PyLith)
 - United States Geological Survey, Menlo Park, CA

- Dr. Charles Williams (PyLith)
 - GNS Science, Wellington, NZ
To be widely accepted, GPU computing must be transparent to the user, and reuse existing infrastructure.
To be widely accepted, GPU computing must be transparent to the user, and reuse existing infrastructure.
To be widely accepted, GPU computing must be transparent to the user, and reuse existing infrastructure.
Lessons from Clusters and MPPs

Failure
- Parallelizing Compilers
- Automatic program decomposition

Success
- MPI (Library Approach)
- PETSc (Parallel Linear Algebra)
- User provides only the mathematical description
Lessons from Clusters and MPPs

Failure
- Parallelizing Compilers
- Automatic program decomposition

Success
- MPI (Library Approach)
- PETSc (Parallel Linear Algebra)
- User provides only the mathematical description
Thrust is a CUDA library of parallel algorithms

- Interface similar to C++ Standard Template Library
- Containers (\textit{vector}) on both host and device
- Algorithms: \texttt{sort}, \texttt{reduce}, \texttt{scan}
- Freely available, part of PETSc configure (\texttt{-with-thrust-dir})
Cusp is a CUDA library for sparse linear algebra and graph computations

- Builds on data structures in Thrust
- Provides sparse matrices in several formats (CSR, Hybrid)
- Includes some preliminary preconditioners (Jacobi, SA-AMG)
- Freely available, part of PETSc configure (-with-cusp-dir)
Strategy: Define a new Vec implementation

- Uses Thrust for data storage and operations on GPU
- Supports full PETSc Vec interface
- Inherits PETSc scalar type
- Can be activated at runtime, –vec_type cuda
- PETSc provides memory coherence mechanism
Memory Coherence

PETSc Objects now hold a coherence flag

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETSC_CUDA_UNALLOCATED</td>
<td>No allocation on the GPU</td>
</tr>
<tr>
<td>PETSC_CUDA_GPU</td>
<td>Values on GPU are current</td>
</tr>
<tr>
<td>PETSC_CUDA_CPU</td>
<td>Values on CPU are current</td>
</tr>
<tr>
<td>PETSC_CUDA_BOTH</td>
<td>Values on both are current</td>
</tr>
</tbody>
</table>

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.
Also define new **Mat** implementations

- Uses Cusp for data storage and operations on GPU
- Supports full PETSc **Mat** interface, some ops on CPU
- Can be activated at runtime, `-mat_type aijcuda`
- Notice that parallel matvec necessitates off-GPU data transfer
Solvers come for Free

- All linear algebra types work with solvers
- Entire solve can take place on the GPU
 - Only communicate scalars back to CPU
- GPU communication cost could be amortized over several solves
- Preconditioners are a problem
 - Cusp has a promising AMG
PETSc only needs

Turn on CUDA
--with-cuda

Specify the CUDA compiler
--with-cudac='nvcc -m64'

Indicate the location of packages
--download-* will also work soon
--with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp

Can also use double precision
--with-precision=single
Example
Driven Cavity Velocity-Vorticity with Multigrid

```
ex19 -da_vec_type seqcuda -da_mat_type aijcuda -mat_no_inode -da_grid_x 100 -da_grid_y 100 -pc_type none -dmmg_nlevels 1 -preload off -cuda_synchronize -log_summary
```

Setup types
Set grid size
Setup solver
Setup run
Outline

1 PETSc-GPU

2 FEM-GPU
 - Analytic Flexibility
 - Computational Flexibility
 - Efficiency
What are the Benefits for current PDE Code?

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

http://www.bitbucket.org/aterrel/flamefem
What are the Benefits for current PDE Code?

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

http://www.bitbucket.org/aterrel/flamefem
What are the Benefits for current PDE Code?

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

http://www.bitbucket.org/aterrel/flamefem
What are the Benefits for current PDE Code?

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

http://www.bitbucket.org/aterrel/flamefem
Outline

2. FEM-GPU
 - Analytic Flexibility
 - Computational Flexibility
 - Efficiency
\[\int_T \nabla \phi_i(x) \cdot \nabla \phi_j(x) dx \] (1)

element = FiniteElement('Lagrange', tetrahedron, 1)
v = TestFunction(element)
u = TrialFunction(element)
a = inner(grad(v), grad(u)) * dx
Analytic Flexibility

Laplacian

\[
\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}
\] \hspace{1cm} (1)

element = FiniteElement('Lagrange', tetrahedron, 1)

v = TestFunction(element)

u = TrialFunction(element)

a = inner(grad(v), grad(u)) * dx
\[
\frac{1}{4} \int_T \left(\nabla \phi_i(x) + \nabla^T \phi_i(x) \right) : \left(\nabla \phi_j(x) + \nabla^T \phi_j(x) \right) \, dx \quad (2)
\]

```python
element = VectorElement('Lagrange', tetrahedron, 1)
v = TestFunction(element)
u = TrialFunction(element)
a = inner(sym(grad(v)), sym(grad(u))) * dx
```
\[\frac{1}{4} \int_T \left(\nabla \vec{\phi}_i(x) + \nabla^T \vec{\phi}_i(x) \right) : \left(\nabla \vec{\phi}_j(x) + \nabla^T \vec{\phi}_j(x) \right) \, dx \]

\begin{verbatim}
 element = VectorElement('Lagrange', tetrahedron, 1)
 v = TestFunction(element)
 u = TrialFunction(element)
 a = inner(sym(grad(v)), sym(grad(u))) * dx
\end{verbatim}
\[
\frac{1}{4} \int_T \left(\nabla \phi_i(x) + \nabla^T \phi_i(x) \right) : C : \left(\nabla \phi_j(x) + \nabla \phi_j(x) \right) \, dx
\]
(3)

element = VectorElement('Lagrange', tetrahedron, 1)
cElement = TensorElement('Lagrange', tetrahedron, 1, (dim, dim, dim, dim, dim))
v = TestFunction(element)
u = TrialFunction(element)
C = Coefficient(cElement)
i, j, k, l = indices(4)
a = sym(grad(v))[i,j] * C[i,j,k,l] * sym(grad(u))[k,l] * dx

Currently broken in FEniCS release
\[
\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) \, d\mathbf{x} \tag{3}
\]

```python
element = VectorElement('Lagrange', tetrahedron, 1)
cElement = TensorElement('Lagrange', tetrahedron, 1,
                          (dim, dim, dim, dim, dim))
v = TestFunction(element)
u = TrialFunction(element)
C = Coefficient(cElement)
i, j, k, l = indices(4)
a = sym(grad(v))[i,j] * C[i,j,k,l] * sym(grad(u))[k,l] * dx
```

Currently broken in FEniCS release
\[\frac{1}{4} \int_{T} \left(\nabla \phi_i(x) + \nabla^T \phi_i(x) \right) : \mathbf{C} : \left(\nabla \phi_j(x) + \nabla \phi_j(x) \right) \, dx \]

\text{element} = \text{VectorElement}('\text{Lagrange}', \text{tetrahedron}, 1)
\text{cElement} = \text{TensorElement}('\text{Lagrange}', \text{tetrahedron}, 1,
(dim, dim, dim, dim, dim))

\text{v} = \text{TestFunction} (\text{element})
\text{u} = \text{TrialFunction} (\text{element})
\text{C} = \text{Coefficient} (\text{cElement})
\text{i, j, k, l} = \text{indices}(4)
\text{a} = \text{sym} (\text{grad} (\text{v})) [i, j] * \text{C} [i, j, k, l] * \text{sym} (\text{grad} (\text{u})) [k, l] * \text{dx}

Currently broken in FEniCS release
Outline

2 FEM-GPU
- Analytic Flexibility
- Computational Flexibility
- Efficiency
Element integrals are decomposed into analytic and geometric parts:

\[
\int_{\mathcal{T}} \nabla \phi_i(x) \cdot \nabla \phi_j(x) \, dx = \int_{\mathcal{T}} \frac{\partial \phi_i(x)}{\partial x_\alpha} \frac{\partial \phi_j(x)}{\partial x_\alpha} \, dx \\
= \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \phi_j(\xi)}{\partial x_\gamma} |J| \, dx \\
= \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \xi_\gamma}{\partial x_\alpha} |J| \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dx \\
= G^{\beta\gamma}(\mathcal{T}) K^{ij}_{\beta\gamma}
\]

Coefficients are also put into the geometric part.
Additional fields give rise to **multilinear** forms.

\[
\int_T \phi_i(x) \cdot \left(\phi_k(x) \nabla \phi_j(x) \right) \, dA \\
= \int_T \phi_i^\beta(x) \left(\phi_k^\alpha(x) \frac{\partial \phi_j^\beta(x)}{\partial x^\alpha} \right) \, dA \\
= \int_{T_{\text{ref}}} \phi_i^\beta(\xi) \phi_k^\alpha(\xi) \frac{\partial \xi^\gamma}{\partial x^\alpha} \frac{\partial \phi_j^\beta(\xi)}{\partial \xi^\gamma} |\mathbf{J}| \, dA \\
= \frac{\partial \xi^\gamma}{\partial x^\alpha} |\mathbf{J}| \int_{T_{\text{ref}}} \phi_i^\beta(\xi) \phi_k^\alpha(\xi) \frac{\partial \phi_j^\beta(\xi)}{\partial \xi^\gamma} \, dA \\
= G^{\alpha\gamma}(T) K^{ijk}_{\alpha\gamma}
\]

The index calculus is fully developed by Kirby and Logg in *A Compiler for Variational Forms*.
Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

\[\int_{\mathcal{T}} \nabla \phi_i(x) \cdot \nabla \phi_j(x) \, dA \]
\[= \int_{\mathcal{T}} \frac{\partial \phi_i(x)}{\partial x_\alpha} \frac{\partial \phi_j(x)}{\partial x_\alpha} \, dA \]
\[= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \phi_i(\xi)}{\partial \xi_\gamma} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} |J| \, dA \]
\[= |J| \int_{\mathcal{T}_{ref}} \phi_k J^\beta_\alpha J_\gamma^\alpha \phi_l \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dA \]
\[= J^\beta_\alpha J_\gamma^\alpha |J| \int_{\mathcal{T}_{ref}} \phi_k \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \phi_l \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dA \]
\[= G_{kl}^{\beta\gamma}(\mathcal{T}) K_{\beta\gamma}^{ijkl} \]

A different space could also be used for Jacobians
from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters['representation'] = 'tensor'
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)

a_K = ir[2][0]["AK"][0][0]
a_G = ir[2][0]["AK"][0][1]

K = a_K.A0.astype(numpy.float32)
G = a_G
We generate different computations on the fly, and can change:

- Element Batch Size
- Number of Concurrent Elements
- Loop unrolling
- Interleaving stores with computation
Figure: Tensor Contraction $G^{\beta\gamma}(T)K_{\beta\gamma}^{ij}$
Figure: Tensor Contraction $G^{\beta \gamma}(T)K_{\beta \gamma}^{ij}$
Figure: Tensor Contraction $G^\beta\gamma(T)K^{ij}_{\beta\gamma}$
Figure: Tensor Contraction $G^{\beta\gamma}(T)K^{ij}_{\beta\gamma}$
Computational Flexibility

Element Batch Size

Figure: Tensor Contraction $G^\beta\gamma(T)K^ij_{\beta\gamma}$
Computational Flexibility

Element Batch Size

Figure: Tensor Contraction $G^\beta_\gamma (T) K_{ij}^{\beta_\gamma}$
Figure: Tensor Contraction $G^{\beta\gamma}(T)K^{ij}_{\beta\gamma}$
Computational Flexibility
Element Batch Size

Figure: Tensor Contraction $G^{\beta\gamma}(\mathcal{T})K_{\beta\gamma}^{ij}$
Computational Flexibility

Concurrent Elements

\[K \]

\[G^0_0 \]
\[G^0_1 \]
\[G^0_2 \]
\[G^0_3 \]

\[G^1_0 \]
\[G^1_1 \]
\[G^1_2 \]
\[G^1_3 \]

Thread mapping:
- Thread 0
- Thread 5
- Thread 15
- Thread 16
- Thread 21
Computational Flexibility

Concurrent Elements

Figure: Tensor Contraction

\[K \]

\[G^0_0 \]
\[G^0_1 \]
\[G^0_2 \]
\[G^0_3 \]
\[G^1_0 \]
\[G^1_1 \]
\[G^1_2 \]
\[G^1_3 \]

Thread assignments:
- Thread 0
- Thread 5
- Thread 15
- Thread 16
- Thread 21
- Thread 31
Computational Flexibility

Concurrent Elements

Figure: Tensor Contraction

K

$m. Knepley (UC)$

PDE on GPU
Computational Flexibility
Concurrent Elements

Figure: Tensor Contraction

\[K = \beta^\gamma (T) K_{ij}^{\beta\gamma} \]

M. Knepley (UC)
Loop Unrolling

/* G K contraction: unroll = full */
E[0] += G[0] * K[0];
E[0] += G[1] * K[1];
E[0] += G[7] * K[7];
E[0] += G[8] * K[8];
/* G K contraction: unroll = none */

```c
for(int b = 0; b < 1; ++b) {
    const int n = b*1;
    for(int alpha = 0; alpha < 3; ++alpha) {
        for(int beta = 0; beta < 3; ++beta) {
            E[b] += G[n*9+alpha*3+beta] * K[alpha*3+beta];
        }
    }
}
```
/* G K contraction: unroll = none */
for(int b = 0; b < 4; ++b) {
 const int n = b*1;
 for(int alpha = 0; alpha < 3; ++alpha) {
 for(int beta = 0; beta < 3; ++beta) {
 E[b] += G[n*9+alpha*3+beta] * K[alpha*3+beta];
 }
 }
}

/* Store contraction results */
elemMat[Eoffset+idx+0] = E[0];
elemMat[Eoffset+idx+16] = E[1];
elemMat[Eoffset+idx+32] = E[2];
elemMat[Eoffset+idx+48] = E[3];
n = 0;

for(int alpha = 0; alpha < 3; ++alpha) {
 for(int beta = 0; beta < 3; ++beta) {
 E += G[n*9+alpha*3+beta] * K[alpha*3+beta];
 }
}

/* Store contraction result */
elemMat[Eoffset+idx+0] = E;

n = 1; E = 0.0; /* contract */
elemMat[Eoffset+idx+16] = E;

n = 2; E = 0.0; /* contract */
elemMat[Eoffset+idx+32] = E;

n = 3; E = 0.0; /* contract */
elemMat[Eoffset+idx+48] = E;
FEM-GPU

- Analytic Flexibility
- Computational Flexibility
- Efficiency
Performance
Peak Performance

GPU Flop Rate for
3D P_1 Lagrange Laplacian and 2D P_1 Lagrange Elasticity

MFlops/s

Number of Elements

Laplacian bs128 ce2 is
Elasticity bs256 ce2 is
Price-Performance Comparison of CPU and GPU

3D P_1 Laplacian Integration

<table>
<thead>
<tr>
<th>Model</th>
<th>Price ($)</th>
<th>GF/s</th>
<th>MF/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX285</td>
<td>390</td>
<td>90</td>
<td>231</td>
</tr>
<tr>
<td>Core 2 Duo</td>
<td>300</td>
<td>2</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Price-Performance Comparison of CPU and GPU
3D P_1 Laplacian Integration

<table>
<thead>
<tr>
<th>Model</th>
<th>Price ($)</th>
<th>GF/s</th>
<th>MF/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX285</td>
<td>390</td>
<td>90</td>
<td>231</td>
</tr>
<tr>
<td>Core 2 Duo</td>
<td>300</td>
<td>12*</td>
<td>40</td>
</tr>
</tbody>
</table>

* Jed Brown Optimization Engine
Performance
Influence of Element Batch Sizes

CPU vs. GPU Flop Rate for 2D P_1 Lagrange ['Elasticity']

Interleave Stores = 1
Loop Unrolling = full
Performance
Influence of Code Structure

CPU vs. GPU Flop Rate for 3D P_1 Lagrange Laplacian

Element Blocksize = 128
Concurrent Elem = 2

NVIDIA bs128 ce2 is
NVIDIA bs128 ce2 unroll
Explaining performance

- Increase shared memory and work/thread until you top out
 - Occupancies go down or level out as performance goes up

- Does not work without interleaved stores
 - Scheduler can switch to kernels who are computing
 - Larger number of smaller computations makes better fit

- Should I worry about detailed explanations for performance?
 - Sensible decompositions, coupled with exploration
 - FLAME methodology
Automated Tuning System

Components of our performance evaluation system:

- Generate set of kernels using:
 - Loop slicing, store reordering, etc.
 - Loop invariants ala FLAME
 - High level constructs ala Rheagen and FEniCS

- Store results and metadata in HDF5 using PyTables
 - Thousands of tests for this talk

- Interrogate and plot with Matplotlib

- Eventually couple to build system
 - FFTW, Spiral, FLAME
Structured code generation,
can allow easy integration
of novel hardware
and reconcile user physics
with system traversals.
Structured code generation, can allow easy integration of novel hardware and reconcile user physics with system traversals.
Why Should You Try This?

Structured code generation, can allow easy integration of novel hardware and reconcile user physics with system traversals.