NetworkX
Exploring network structure, dynamics, and function

Aric Hagberg1 Daniel Schult2 Pieter Swart1

1Theoretical Division,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Department of Mathematics, Colgate University, Hamilton, NY 13346, USA

5 March 2009
Vast amounts of data are being generated and collected

- **Technology:** Internet, telecommunications, power grid
- **Sociology:** WWW, email, social networking
- **Biology:** protein interactions, genetic regulatory networks, epidemiology

Need theory, analysis, models
Example: social networks and epidemics

Understand epidemic outbreak of diseases through modeling
Build social networks from detailed census data
Run dynamic models for smallpox, SARS, flu, etc.

Building a social network

Goal: find a good intervention strategy
NISAC: EpiSimS

Social network of one person
Example: interdiction

Problem: smuggling of nuclear material in transportation network

Potential source site (Kurchatov Institute, Moscow).

Detector at border crossing

Image credits: NTI
Example: interdiction

Find best set of roads (edges) to monitor (cut) with limited budget
University libraries, journals, and aggregators collect journal usage data through web portals.
MESUR project is analyzing about 1 billion usage events.
Build network from user click streams.

- Do scholars read and cite journals in the same way?
- Can new trends in research (new field, interdisciplinary) be spotted?
- Which journals are most important according to usage?

Johan Bollen, Los Alamos
Example: journal usage network
Why we started project

We needed:
- Tool to study the structure and dynamics of social, biological, and infrastructure networks
- Ease-of-use and rapid development in a collaborative, multidisciplinary environment
- Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users and developers
- An easy interface to existing code bases written in C, C++, and FORTRAN
- To painlessly slurp in large nonstandard data sets

- No existing API or graph implementation that was suitable
- Inspired by Guido van Rossum’s 1998 Python graph representation essay
- First public release in April 2005
NetworkX in one slide

- Python language package for exploration and analysis of networks and network algorithms
- Data structures for representing many types of networks, or graphs, (simple graphs, directed graphs, and graphs with parallel edges and self loops)
- Nodes can be any (hashable) Python object
- Edges can contain arbitrary data
- Flexibility ideal for representing networks found in many different fields
Using NetworkX
Adding nodes

Start Python
Import NetworkX using “nx” as a short name

```python
>>> import networkx as nx
```

The basic `Graph` class is used to hold the network information. Nodes can be added as follows:

```python
>>> G=nx.Graph()
>>> G.add_node(1) # integer
>>> G.add_node('a') # string
>>> print G.nodes()
['a', 1]
```
Nodes can be any hashable object such as strings, numbers, files, functions, and more

```python
>>> import math
>>> G.add_node(math.cos)  # cosine function
>>> fh=open('tmp.txt','w')
>>> G.add_node(fh)  # file handle
>>> G.add_node(fh)  # file handle
>>> print G.nodes()
[<built-in function cos>,
  <open file 'tmp.txt', mode 'w' at 0x30dc38>]
```
Edges, or links, between nodes are represented as tuples of nodes. They can be added simply:

```python
>>> G.add_edge(1, 'a')
>>> G.add_edge('b', math.cos)
>>> print G.edges()
[('b', <built-in function cos>), ('a', 1)]
```

If the nodes do not already exist they are automatically added to the graph.
Edge data d assigned using a 3-tuple (u, v, d)
Default d is (integer) 1 - any Python object is allowed

Use Dijkstra’s algorithm to find the shortest weighted path:

```python
>>> G=Graph()
>>> e=[('a','b',0.3),('b','c',0.9),
    ('a','c',0.5),('c','d',1.2)]
>>> G.add_edges_from(e)
>>> print dijsktra_path(G,'a','d')
['a', 'c', 'd']
```
Graph generators and statistics

Generators for many classic graphs and random graph models
Used for modeling and testing new algorithms
Generate 6 node path and compute some statistics

```python
>>> G = nx.path_graph(6)
>>> print G.degree()
[1, 2, 2, 2, 2, 1]
>>> print nx.density(G)
0.333333333333
>>> print nx.diameter(G)
5
>>> print nx.degree_histogram(G)
[0, 2, 4]
>>> print nx.betweenness_centrality(G)
{0: 0.0, 1: 0.4, 2: 0.6,
 3: 0.6, 4: 0.4, 5: 0.0}
```
It’s “Python all the way down”
NetworkX uses a “dictionary of dictionaries”
Good for adjacency list representation (sparse graphs)

- Node n is a key in the G.adj dictionary
- Data is a dictionary with neighbors as keys and data

Representation of an undirected graph with the edges $A \rightarrow B$, $B \rightarrow C$

```python
>>> G=nx.Graph()
>>> G.add_edge('A','B')
>>> G.add_edge('B','C')
>>> print G.adj
{'A': {'B': 1},
 'B': {'A': 1, 'C': 1},
 'C': {'B': 1}}
```
Guido van Rossum proposed a dictionary of lists
Allows the natural expressions (Eppstein)

- “n in G” to test if the graph G contains node n
- “for n in G” to loop over all nodes

Advantages of “dict of dict” data structure

- Find edges and remove edges with two dictionary look-ups
- Prefer to “sets” since data can be attached to edge
 - $G[u][v]$ returns the edge object

Design decisions

NetworkX defines no custom node objects or edge objects
- “node-centric” view of network
- Nodes: whatever you put in (hashable)
- Edges: tuples with optional edge data (three-tuple)
- Edge data is arbitrary and users can define custom node types

NetworkX is all Python
(Other projects use custom compiled code and Python: Boost Graph, igraph, Graphviz)
- Focus on computational network modeling not software tool development
- Move fast to design new algorithms or models
Writing a simple algorithm

Breadth First Search

```python
from collections import deque

def bfs(g, source):
    queue = deque([(None, source)])
    enqueued = set([source])
    while queue:
        parent, n = queue.popleft()
        yield parent, n
        new = set(g[n]) - enqueued
        enqueued |= new
        queue.extend([(n, child) for child in new])

Credit: Matteo Dell’Amico
```
def shortest_path(g, source, target):
 paths = {None: []}
 for parent, child in bfs(g, source):
 paths[child] = paths[parent] + [child]
 if child == target:
 return paths[child]
 return None # or raise appropriate exception

Credit: Matteo Dell’Amico
Directed Scale-Free Graphs

Béla Bollobás* Christian Borgs† Jennifer Chayes† Oliver Riordan§

2 The model
We consider a directed graph which grows by adding single edges at discrete time steps. At each such step a vertex may or may not also be added. For simplicity we allow multiple edges and loops. More precisely, let \(\alpha, \beta, \gamma, \delta_{in} \) and \(\delta_{out} \) be non-negative real numbers, with \(\alpha + \beta + \gamma = 1 \). Let \(G_0 \) be any fixed initial directed graph, for example a single vertex without edges, and let \(t_0 \) be the number of edges of \(G_0 \). (Depending on the parameters, we may have to assume \(t_0 \geq 1 \) for the first few steps of our process to make sense.) We set \(G(t_0) = G_0 \), so at time \(t \) the graph \(G(t) \) has exactly \(t \) edges, and a random number \(n(t) \) of vertices. In what follows, to choose a vertex \(v \) of \(G(t) \) according to \(d_{out} + \delta_{out} \) means to choose \(v \) so that \(\Pr(v = v_i) \) is proportional to \(d_{out}(v_i) + \delta_{out} \), i.e., so that \(\Pr(v = v_i) = (d_{out}(v_i) + \delta_{out})/(t + \delta_{out} n(t)) \). To choose \(v \) according to \(d_{in} + \delta_{in} \) means to choose \(v \) so that \(\Pr(v = v_i) = (d_{in}(v_i) + \delta_{in})/(t + \delta_{in} n(t)) \). Here \(d_{out}(v_i) \) and \(d_{in}(v_i) \) are the out-degree and in-degree of \(v_i \), measured in the graph \(G(t) \).

For \(t \geq t_0 \) we form \(G(t+1) \) from \(G(t) \) according the following rules:

(A) With probability \(\alpha \), add a new vertex \(v \) together with an edge from \(v \) to an existing vertex \(w \), where \(w \) is chosen according to \(d_{in} + \delta_{in} \).

(B) With probability \(\beta \), add an edge from an existing vertex \(v \) to an existing vertex \(w \), where \(v \) and \(w \) are chosen independently, \(v \) according to \(d_{out} + \delta_{out} \), and \(w \) according to \(d_{in} + \delta_{in} \).

(C) With probability \(\gamma \), add a new vertex \(w \) and an edge from an existing vertex \(v \) to \(w \), where \(v \) is chosen according to \(d_{out} + \delta_{out} \).
import bisect
import random
from networkx import MultiDiGraph

def scale_free_graph(n, alpha=0.41, beta=0.54, delta_in=0.2, delta_out=0):
 def _choose_node(G, distribution, delta):
 cumsum = 0.0
 psum = float(sum(distribution.values())) + float(delta) * len(distribution)
 r = random.random()
 for i in range(0, len(distribution)):
 cumsum += (distribution[i] + delta) / psum
 if r <= cumsum:
 break
 return i

 G = MultiDiGraph()
 G.add_edges_from([(0, 1), (1, 2), (2, 0)])
 gamma = 1 - alpha - beta

 while len(G) < n:
 r = random.random()
 if r < alpha:
 v = len(G)
 w = _choose_node(G, G.in_degree(with_labels=True), delta_in)
 elif r < alpha + beta:
 v = _choose_node(G, G.out_degree(with_labels=True), delta_out)
 w = _choose_node(G, G.in_degree(with_labels=True), delta_in)
 else:
 v = _choose_node(G, G.out_degree(with_labels=True), delta_out)
 w = len(G)
 G.add_edge(v, w)
 return G
Leveraging libraries

Use well-tested numerical and statistical libraries
Convert to NumPy (and SciPy sparse) matrices
Example: Find eigenvalue spectrum of the graph Laplacian

```python
>>> L = nx.laplacian(G)
>>> print L  # a NumPy matrix
[[ 1. -1.  0.  0.  0.  0.]
 [-1.  2. -1.  0.  0.  0.]
 [ 0. -1.  2. -1.  0.  0.]
 [ 0.  0. -1.  2. -1.  0.]
 [ 0.  0.  0. -1.  2. -1.]
 [ 0.  0.  0.  0. -1.  1.]]
>>> import numpy.linalg
>>> print numpy.linalg.eigvals(L)
[ 3.7321e+00  3.0000e+00  2.0000e+00  1.0000e+00  2.6795e-01]
```
Built-in interface to Matplotlib plotting package
Node positioning algorithms based on force-directed, spectral, and geometric methods

```python
>>> G = nx.circular_ladder_graph(12)
>>> nx.draw(G) # Matplotlib under the hood
```
Drawing with Matplotlib

Hagberg

NetworkX
Drawing with other programs

Graphviz

Output to: dot, GML, LEDA, edge list, adjacency list, YAML, sparsegraph6, GraphML

UbiGraph
Movie: Todd Veldhuizen

http://math.lanl.gov/~hagberg/movies/networkx_ubigraph.mov
Where is NetworkX being used?
Adding red edges allows network to synchronize. Edges found by studying network Laplacian spectrum.

http://math.lanl.gov/~hagberg/movies-sync.mp4
INFO/SOCI 485 Computational Methods for Complex Networks (Gueorgi Kossinets)
Physics 7682 / Computing & Information Sciences 6229 (Chris Myers)
"Reality mining" (Nathan Eagle)

Inferring social network structure using cell phone data
e.g. 1.2M phone users in Rwanda
FBI: Cybercrime

Fighting cybercrime: botnets, spam, phishing
http://networkx.lanl.gov/

Currently at networkx-0.99
networkx-1.0 soon (overdue)

Release 1.0

- Refactor classes for simpler expression of weighted graphs and graph attributes
- New features: network metrics (PageRank, HITS, etc.), spanning trees, graph readers and writers, more...
- Performance improvements (drawing, algorithms)
- New documentation (with Sphinx)

NetworkX is a community effort. Thanks!