

Python for sc ient i f i c
a lgor i thm development

Fernando Perez
Applied Mathematics

Scipy'06 – Caltech
August 17 2006

A recent quote

I will, in fact, claim that the difference between a
bad programmer and a good one is whether he
considers his code or his data structures more
important. Bad programmers worry about the
code.

Good programmers worry about data structures
and their relationships.

-- Linus Torvalds

I n i t i a l remarks

● Does anyone have my USB drive from the tutorial?
● I gambled on the audience: more scientists new to

python than experts on the language.
● I'll try to keep it interesting for the experts.
● Light on the math/physics, used mostly for

illustration purposes. Talk to me if you care.
● $$$: DARPA, DOE.
● Collaborators:

– Gregory Beylkin (CU Boulder)
– Martin Mohlenkamp (Ohio Univ.)
– Robert Harrison, George Fann (ORNL)

Modern a lgo r i thms:
 There i s more to l i f e than a r rays
Today's scientific software needs:
● Complex data structures
● To work at a high level of abstraction
● to handle mixed data (genetic sequences, time-

tagged data, information from databases...). It's
not just floating-point.

● Interact with other external systems (web,
hardware, software subsystems, ...)

Q: how can we write better scientific software,
and do it faster?

A: I don't know...

 But I think that Python can help

Word count ing :
 The power o f good da ta types

Dictionaries: flexible, efficient and powerful hash tables

Strings: lots of useful methods.

def word_freqs(text):

 """Return a dictionary of word frequencies for the
given text."""

 freqs = {}

 for word in text.split():

 freqs.setdefault(word,0)

 freqs[word] += 1

 return freqs

L igh twe igh t and express ive

class Tree:

 """A binary tree class."""

 def __init__(self, label, left=None, right=None):

 self.label = label

 self.left = left

 self.right = right

def inorder(t):

 """Return the leaves of t in left-right order."""

 if t:

 for node in inorder(t.left):

 yield node

 yield t.label

 for node in inorder(t.right):

 yield node

I n te rac t i ve
 E x p l o r e i d e a s , d a t a w i t h y o u r f i n g e r s

VS

Other good th ings . . .

● Choose your code style. Write
– standalone all-global scripts, or...
– procedural code, or ...
– Object Oriented libraries (with a simple object model

compared to C++), or...
– in a functional style.

Choose the code that best fits your brain or the
problem.

● Reuse your existing code (Fortran, C/C++).
● Uniformity (functions are first-class objects).
● Optimize only what really needs speed.

A mathemat i ca l p rob lem:

Accurate, adaptive, fast algorithms for:

g=T f ⇔ g  x=∫K x− y  f  y d n y

where n=2,3,...,6. (Integral formulations are
nice...)

● Electrostatics (Poisson's equation)
● Electrodynamics (Helmholtz)
● Quantum mechanics (Schrodinger – Lippman-

Schwinger)
● Lots more...

Yes, this is 'just' a matrix-vector product.

What do you need?

g  x=∫K  x− y f  yd n y

Operators:
● Sparse
● Good scaling with n

Functions:
● Adaptively represented
● Compatible with op. rep.

Some ideas (I won't go into the details):

● Gaussian expansions for the kernel K(x-y)
● Multiwavelets (think tensor products of Legendre polynomials)
● Adaptive 2-n trees for function decomposition

What do you want f rom your
code?

● Write code that reads like math (see demo):

h x=g x − f  x

● Make functions easily:

f = from_snippet(nnod=6,ndim=2,cutoff=1e-6,1.0,
 'return sin(x)*cos(y)')

● How do we do this?
● scipy's weave.inline
● dictionaries
● easy but powerful string handling
● in-process calling of multiple different libraries

(even written in different languages)

Func t ions :
s imp le adapt ive decompos i t i ons

Opera tors :
spars i t y and h igh o rder methods

from this

to this

Multiwavelets (illustrated for d=1):

Put t ing i t a l l t ogether (see code)

The Hydrogen g round s ta te

Plain old Schrodinger

H =E⇔[−
1
2
∇

2
−

1
r
]=E

and at

=−2GV ⇔−2 −∇
2


2 I −1V 

can be written as

=−2 E⇒=

We can try to solve this by iterating to a fixed point:

1) Initialize all variables

2) Compute

3) New Energy, new mu, repeat:

new=−2GV old

E=
〈∣H∣〉

〈∣〉
⇒=−2E

The so lu t ion code

Green's function iteration for the ground-state
of the Hydrogen atom
Initialize:
V = potential (1/r)
psi = guess wavefunction
G = Bound-state Helmholtz operator

for n in range(num_iterations):
 # Apply the Greens' function with current value of mu
 psi = -2*G(V*psi)
 # Computation of energy as E = <psi|H|psi>/<psi|psi>
 E = ((-1/2.)*psi.weak_laplacian(psi) +
 V.innerproduct(psi*psi)) / psi.norm_l2()**2
 # Update the operator to new value of mu
 G.mu = sqrt(-2*E)
 # Prepare wavefunction for next iteration
 psi.normalize()

Green 's func t ion i te ra t i on :
convergence

A b r ie f summary

● Write code that reads like the science you care
about.
– Python offers a lot of tricks to let you do that.

● Express new ideas and algorithms as simply as
possible.

● Put as many tools to explore your data as you can
– You debug with the same methods you produce plots

for a paper.
● Take advantage of excellent libraries.
● f2py, weave.inline (and .blitz), ctypes, pyrex,

... are very easy to use.
● Have fun coding science!

