Python for scientific

algorithm development

Fernando Perez
Applied Mathematics

ClU BOULDER

Scipy'06 — Caltech
August 17 2006

A recent quote

| will, in fact, claim that the difference between a
bad programmer and a good one is whether he
considers his code or his data structures more
Important. Bad programmers worry about the

code.

Good programmers worry about data structures
and their relationships.

-- Linus Torvalds

Initial remarks

* Does anyone have my USB drive from the tutorial?

* | gambled on the audience: more scientists new to
oython than experts on the language.

* I'll try to keep it interesting for the experts.

* Light on the math/physics, used mostly for
Illustration purposes. Talk to me if you care.

$$%: DARPA, DOE.

Collaborators:

- Gregory Beylkin (CU Boulder)

- Martin Mohlenkamp (Ohio Univ.)

- Robert Harrison, George Fann (ORNL)

Modern algorithms:

Today's scientific software needs:
* Complex data structures
 To work at a high level of abstraction

* to handle mixed data (genetic sequences, time-
tagged data, information from databases...). It's
not just floating-point.

* Interact with other external systems (web,
hardware, software subsystems, ...)

Q: how can we write better scientific software,
and do it faster?

A: |l don't know...
But | think that Python can help

Word counting:

Dictionaries: flexible, efficient and powerful hash tables
Strings: lots of useful methods.

def word freqgs(text):

"""Return a dictionary of word frequencies for the
given teXt . I n

freqs = {}

for word in text.split():
freqs.setdefault(word,0)
freqs[word] += 1

return freqs

Lightweight and expressive

class Tree:
"""A binary tree class."""
def init (self, label, left=None, right=None):
self.label = label
self.left = left
self.right = right

def 1norder(t):
"""Return the leaves of t in left-right order."""
if t:
for node in inorder(t.left):
yield node
yield t.label
for node in inorder(t.right):

yield node

Interactive

Other good things...

* Choose your code style. Write
- standalone all-global scripts, or...
- procedural code, or ...

- Object Oriented libraries (with a simple object model
compared to C++), or...

- In a functional style.

Choose the code that best fits your brain or the
problem.

 Reuse your existing code (Fortran, C/C++).
* Uniformity (functions are first-class objects).
* Optimize only what really needs speed.

A mathematical problem:

Accurate, adaptive, fast algorithms for:

g=Tfeog(x)=[K(x—y)f(y)d"y

where n=2,3,...,6. (Integral formulations are
nice...)

* Electrostatics (Poisson's equation)
* Electrodynamics (Helmholtz)

* Quantum mechanics (Schrodinger — Lippman-
Schwinger)

* Lots more...
Yes, this is 'just' a matrix-vector product.

What do you need?

g(x)=] K(x—y)f(»)d"y

N\

Operators: Functions:
Sparse Adaptively represented

Good scaling with n Compatible with op. rep.

Some ideas (I won't go into the details):

* Gaussian expansions for the kernel K(x-y)
* Multiwavelets (think tensor products of Legendre polynomials)
* Adaptive 2-n trees for function decomposition

What do you want from your

code?

* Make functions easily:

f = from snippet(nnod=6,ndim=2,cutoff=1e-6,1.0,
'return sin(x)*cos(y)"')

* Write code that reads like math (see demo):
h(x)=g(x)—f(x)
* How do we do this?
* scipy's weave.inline
* dictionaries
* easy but powerful string handling

* in-process calling of multiple different libraries
(even written in different languages)

Functions:

simple adaptive decompositions

0,1) (1,1)

(0,0) (1,0)

Operators:

sparsity and high order methods

Multiwavelets (illustrated for d=1):

IIIII ;J-r rrirr J rrFFrrrs rrp
o -I‘r“r‘iJ:jr -A:
o v - e j:r;
™ » -- J ‘
oo / e 4

r3d. fe A dAdA
55}%}}'5 e {é‘ Feee
cr) A .
.-l; .-l,-uz }"J:J: - a.j:-l:i _ fro m th I S

Putting it all together (see code)

Redundant tree of input
(output skeleton)

Terminal Non-terminal

The Hydrogen ground state

Plain old Schrodinger

1 1
Hy=Eye[-2V=—|y=Ey

can be written as

dp=—2G, Vpo-2(-V>+u’I)"

and at

u=V-_2E=>y=¢

Ve

We can try to solve this by iterating to a fixed point:

1) Initialize all variables
2) Compute ¢,.,=—2G, Vo,
3) New Energy, new mu, repeat: E=

<W|H|W>:>u:m

(wly)

The solution code

Green's function iteration for the ground-state
of the Hydrogen atom
Initialize:

#V = potential (1/r)
psi = quess wavefunction
G = Bound-state Helmholtz operator

for n in range(num iterations):
Apply the Greens' function with current value of mu
psi = -2*G(V*psi)
Computation of energy as E = <psi|H|psi>/<psi|psi>
E=((-1/2.)*psi.weak laplacian(psi) +

V.innerproduct(psi*psi)) / psi.norm 12()**2

Update the operator to new value of mu
G.mu = sqrt(-2*E)
Prepare wavefunction for next iteration
psi.normalize()

Green's function iteration:

convergence

. . — Error in Energy
10-1 e i e | == e=10"°

Atomic units

[[[
0 5 10 15 20
Iteration

A brief summary

Write code that reads like the science you care
about.

- Python offers a lot of tricks to let you do that.

 Express new ideas and algorithms as simply as
possible.

* Put as many tools to explore your data as you can

- You debug with the same methods you produce plots
for a paper.

 Take advantage of excellent libraries.

 f2py, weave.inline (and .blitz), ctypes, pyrex,
... are very easy to use.

* Have fun coding science!

