Python: a view from the floating-point side

Fernando Pérez
http://fperez.org
Fernando.Perez@berkeley.edu

Helen Wills Neuroscience Institute, UC Berkeley

March 24, 2011
Outline

1. Context
2. Scientific Computing
3. Core Scientific Tools
4. Growing rapidly
Outline

1. Context
2. Scientific Computing
3. Core Scientific Tools
4. Growing rapidly
Outline

- Changes in scientific computing - overview
- How did I get here?
- What challenges do we have today in applied mathematics?
 - Reuse old tools
 - Develop more complex algorithms - beyond just linear algebra.
 - Interface with external systems (hardware, sensors, networks, databases, etc).
 - Use hybrid and complex hardware: cpus, gpus, clusters.
 - Code is a run-time resource.
 - Create reproducible results and truly build upon each other’s work.
Significant changes in the science-computing relationship

- **High level** computational systems (Matlab, Mathematica, Python...)
- An avalanche of **experimental quantitative data**
 - Biology, genetics, neuroscience, astronomy, climate modeling...
 - All require algorithmic and computational tools
- **Drop in cost** of computing, storage and data transfer.
- **Internet**: a platform for
 - interaction among scientists
 - sharing of data and code
- **Open Source Software**
 - a similar development model to that of scientific production
 - viable alternatives to proprietary software
Outline

1. Context

2. Scientific Computing

3. Core Scientific Tools

4. Growing rapidly
Beyond (floating point) number crunching

- Hardware floating point
- FORTRAN
- Extended precision floating point
- Arbitrary precision integers
- Rational numbers
- Interval arithmetic
- Symbolic manipulation

Applications:
- Text processing
- Databases
- Graphical user interfaces
- Web interfaces
- Hardware control
- Multi-language integration

Data formats: HDF5, XML, ...
A bit of history, à la Cremona

- High school in Colombia, the 80’s
 - TI-99/4A, 16KB Basic with my Sony tape recorder.
 - A few home tutoring lessons on ’structured programming’, promptly forgotten. Never did anything interesting.

- Engineering college, in Colombia:
 - Engineering: Pascal; my only formal computer course ever.
 - Control a wooden home-made robot in Pascal over a serial port.

- Switch to physics, plot fractals in TurboPascal, Hercules Mono graphics.
 - Program on paper, use mom’s office PC on weekends.
 - Debug on paper. Think a lot away from the screen.
 - No idea about free software, or the internet (which I unplugged)
 - No sense of collaborative work.
Undergraduate thesis: the electrostatic unrestricted 3-body problem.

- Maple -> C -> gnuplot.
- Code generation as a natural part of the problem
- Multi-language integration.

1995: Teach computational physics for undergrads: C/Gnuplot on VAX talking to a 486PC running Linux.

- A complete disaster.
- Never again. Need different/better tools.
- They need to be free, like the Linux I had. But for math.

Graduate school: Mathematica, IDL.

Thesis: lattice QCD (numerical Quantum Chromodynamics)

- large open source C package (MILC), custom C code, Mathematica, IDL, bash, sed, awk, perl, gnuplot.

Tail end of my PhD: perl->python.
Fast application of integral kernels. (Partial Differential Equations)

Implementation went from 1 to 3 dimensions directly (*extremely* unusual).

Very complex algorithm that goes beyond pure numerics.

Very good performance, thanks to NumPy, F2PY and weave.

- Dynamically generated C++ sources: code as a run-time resource.
Outline

1. Context
2. Scientific Computing
3. Core Scientific Tools
4. Growing rapidly

FP (UC Berkeley) Python for science 3/24/11
NumPy: the foundation for array processing

- A flexible, efficient, multidimensional array object.
- Homogeneous elements
 - Supports all native types (ints, floats, etc).
 - Arbitrary user-defined types of fixed size.
 - Arbitrary Python objects can also be stored.
- Convenient syntax for high-level operations.
- Math library that operates on arrays.
- Basic scientific functionality:
 - Linear algebra
 - FFTs
 - Random number generation
Array is a container of objects “of the same kind”: homogeneous.

Concept of “kind” embodied in the data type, or dtype.

Dtypes can be user-defined to be arbitrarily complex.

- Structured arrays: internal structure
- datarray (https://github.com/fperez/datarray): labeled geometry (think R DataFrames)
SciPy: numerical algorithms galore

- **linalg**: Linear algebra routines (including BLAS/LAPACK)
- **sparse**: Sparse Matrices (including UMFPACK, ARPACK,...)
- **fftpack**: Discrete Fourier Transform algorithms
- **cluster**: Vector Quantization / Kmeans
- **odr**: Orthogonal Distance Regression
- **special**: Special Functions (Airy, Bessel, etc).
- **stats**: Statistical Functions
- **optimize**: Optimization Tools
- **maxentropy**: Routines for fitting maximum entropy models
- **integrate**: Numerical Integration routines
- **ndimage**: n-dimensional image package
- **interpolate**: Interpolation Tools
- **signal**: Signal Processing Tools
- **io**: Data input and output
- **Lots more...**
Scikits: domain-specific toolkits
http://scikits.appspot.com

- **ann** Approximate Nearest Neighbor library wrapper for Numpy
- **audiolab** A python module to make noise from numpy arrays
- **bootstrap** Bootstrap Error-Estimation Scikit
- **bvp1lg** Boundary value problem (legacy) solvers for ODEs
- **bvp_solver** two-point boundary value problems
- **cuda** Python interface to GPU-powered libraries
- **datasmooth** Scikits data smoothing package
- **eartho** Earth Observation routines for SciPy
- **hydroclimpy** Environmental time series manipulation
- **image** Image processing routines for SciPy
- **learn** A set of python modules for machine learning and data mining
- **odes** ODE and differential algebraic equation solvers
- **optimization** A python module for numerical optimization
- **samplerate** A python module for high quality audio resampling
- **scattpy** Light Scattering methods for Python
- **sparse** Scikits sparse matrix package
- **statsmodels** Statistical computations and models for use with SciPy
- **...** More that don’t fit here
Getting all the power from interactive computing in Python

1. A better Python shell: object introspection, system access, extensible ‘magic’ commands, ...
2. A flexible, embeddable interpreter:
 1. debugging, mix batch/interactive work.
 2. build custom systems based on Python with new syntax, etc.
3. Data visualization and GUIs: Matplotlib, Mayavi, all GUIs toolkits.
4. A rich toolkit: terminal, Qt console, HTTP client.
5. High level (and interactive!) parallel computing interfaces.
IPython: Matlab/IDL-like interactive use

Welcome to pylab, a matplotlib-based Python environment. For more information, type `help(pylab)`.

In [1]: import math, numpy
In [2]: from scipy.integrate import quad
In [3]: from scipy.special import j0
In [4]: def j0i(x):
 ...: """Integral form of J_0(x)""
 ...: def integrand(phi):
 ...: return math.cos(x*math.sin(phi))
 ...: return quad(integrand, 0, math.pi)[0]

In [5]: x = numpy.linspace(0, 20, 200) # sample grid: 200 points between 0 and 20
In [6]: y = j0i(x) # sample J0 at all values of x
In [7]: x1 = x[::-1] # subsample the original grid every 10th point
In [8]: y1 = map(j0i, x1) # evaluate the integral form at all points in x1
In [9]: # Make a plot with these values (the ; suppresses output)
In [10]: plot(x, y, label=r'$J_0(x)$');
In [11]: plot(x1, y1, 'ro', label=r'$J_0^\text{int}(x)$');
In [12]: axhline(0, color='green', label='nolegend_');
In [13]: title(r'Verify $J_0(x) = \frac{1}{2} \int_0^\pi \cos(x \sin \phi) \, d\phi$');
In [14]: xlabel('x');
In [15]: legend();
In [16]: matplotlib.pyplot.figure.Figure instance at 0x4630042c

In [17]: matshow(random.random((32, 32)))
In [18]: show()
Scientific

- **Sage**: open source mathematics.
- **PyRAF**: Space Telescope Science Institute
- **CASA**: National Radio Astronomy Observatory.
- **Ganga**: CERN.
- **PyMAD**: neutron spectrometer, Institut Laue Langevin.
- **Sardana**: European Synchrotron Radiation Facility.
- **ASCEND**: engineering modeling (Carnegie Mellon).
- **JModelica**: dynamical systems.
- **Denver Aerosol Sources and Health (DASH)**, CU Boulder.
- **PyIMSL** Studio, by Visual Numerics.
- **Trilinos**: Sandia National Lab.
- **Pymerase**: microarray gene expression.

Web/Other

- **Visual Studio 2010**: MS.
- **Django** web.
- **Turbo Gears** web.
- **Pylons** web framework
- **Zope** and **Plone** CMS.
- **Axon Shell**, BBC **Kamaelia**.
- **Schevo** database.
- **Pitz**: distributed task/bug tracking.
- **iVR** (interactive Virtual Reality).
- **Movable Python** (portable Python environment).
- ...
IPython: a REPL (Read/Eval/Print Loop)

Core idea: manage a namespace

- Read: take user input.
- Eval: execute code.
- Print: provide output.
- Add support for data transfer...

...and interactive and parallel work start looking very similar.

These steps can happen in multiple processes:

- Read: user environment
- Eval: kernel process
- Print: user environment
IPython: a REPL (Read/Eval/Print Loop)

Core idea: manage a namespace
- Read: take user input.
- Eval: execute code.
- Print: provide output.
- Add support for data transfer...

...and interactive and parallel work start looking very similar.

These steps can happen in multiple processes:
- Read: user environment
- Eval: kernel process
- Print: user environment
Core idea: manage a namespace

- Read: take user input.
- Eval: execute code.
- Print: provide output.
- Add support for data transfer...

...and interactive and parallel work start looking very similar.

These steps can happen in multiple processes:

- Read: user environment
- Eval: kernel process
- Print: user environment
More complex interactive uses?

Kernel

Client - Terminal

Client - Qt

Client - ...

Client: monitor, email, publish, ...
A messaging protocol

Direct communication
- Execute code (‘eval’)
- Object information
- Complete
- History
- Connect

Broadcasting
- Functional execution:
 - Python inputs
 - Python outputs
 - Python errors
- Side effects:
 - Streams (stdout, stderr, etc)
 - Display data: plots, other payloads
The socket library that acts as a concurrency framework

- Pure C++ library.
- Python bindings in Cython (Brian Granger, Min RK). Python 2.5-3.2.
- Python bindings run messaging in native threads - no GIL
- Abstractions are at the message delivery level, not the raw-bytes level.
- Socket types encapsulate messaging patterns.
- Open source (LGPL), actively developed.
ØMQ: Messaging patterns

Figure 1 – Request-Reply

Figure 4 – Publish-Subscribe

Image credit: official ØMQ documentation
Interactive IPython on ØMQ

- Kernel raw_input
- Requests to kernel
- Kernel output broadcast
- Request/Reply direction
Back to the clients: a rich Qt Console
Enthought: sponsorship, Evan Patterson.

Feels like a console, runs like a GUI

- Inline and floating images
- Syntax highlighting, full multiline editing
- Session saving
 - HTML (with PNG or SVG)
 - PDF/printing
- Help viewer
- %magics, !system access, IPython...
- Detach/reattach support
A little detour

Python and parallel computing
Parallel computing: why should we care?

Because reality looks like this:

Sources: Intel, Microsoft (Sutter), Stanford (Olukotun, Hammond) & Berkeley (Yelick)
We can’t escape thermodynamics

The vendor’s solutions

• Multicore chips: everywhere (soon in your phone)
• Graphics cards: hundreds of specialized processors per card.
• High-density clusters: SiCortex (> 5000 processors in a cabinet).
We can’t escape thermodynamics

The vendor’s solutions

- Multicore chips: everywhere (soon in your phone)
- Graphics cards: hundreds of specialized processors per card.
- High-density clusters: SiCortex (> 5000 processors in a cabinet).

Moore’s Law Extrapolation: Power Density for Leading Edge Microprocessors

Power Density Becomes Too High to Cool Chips Inexpensively

Sources: Shekhar Borkar, Intel Corp & Kathy Yelick, UC Berkeley
The infamous Global Interpreter Lock in CPython

Only one thread can modify Python state/variables at a time

- Historical reasons, simplicity of implementation
- All attempts at removing it have failed
 - 2x loss of performance is not acceptable
- Threads only good for i/o bound tasks.
- Mostly useless for CPU-bound ones.
- Can operate on pre-allocated arrays, but:
 - code must be in C/C++/Fortran/Cython
 - be very careful with locking if code is not atomic at Python level

The best possible reference on the GIL: David Beazley’s work

http://www.dabeaz.com/GIL
The infamous Global Interpreter Lock in CPython

Only one thread can modify Python state/variables at a time

- Historical reasons, simplicity of implementation
- All attempts at removing it have failed
 - 2x loss of performance is not acceptable
- Threads only good for i/o bound tasks.
- Mostly useless for CPU-bound ones.
- Can operate on pre-allocated arrays, but:
 - code must be in C/C++/Fortran/Cython
 - be very careful with locking if code is not atomic at Python level

The best possible reference on the GIL: David Beazley’s work

http://www.dabeaz.com/GIL
Parallelism in Python

- **In-process (mind the GIL)**
 - Data parallelism with threaded libraries
 - Numpy/Scipy can use a threaded ATLAS
 - Numexpr: a 'numpy VM'
 - Theano: a library that thinks it's a compiler
 - GPU-based solutions: PyCuda/PyOpenCL, scikits.cuda.
 - Hand-written threaded code...

- **Out-of-process**
 - The multiprocessing module
 - Python futures: coming in Python 3.2.
 - Communicating Sequential Processes, ParallelPython, ... many more
 - IPython
Parallelism in Python

- **In-process (mind the GIL)**
 - Data parallelism with threaded libraries
 - Numpy/Scipy can use a threaded ATLAS
 - Numexpr: a 'numpy VM'
 - Theano: a library that thinks it's a compiler
 - GPU-based solutions: PyCuda/PyOpenCL, scikits.cuda.
 - Hand-written threaded code...

- **Out-of-process**
 - The multiprocessing module
 - Python futures: coming in Python 3.2.
 - Communicating Sequential Processes, ParallelPython, ... many more
 - IPython
IPython for parallel computing
With Brian Granger (Cal Poly San Luis Obispo), Min Ragan-Kelley (Berkeley)
Phenomenal task latency

The graph shows the performance of different libraries for ping tasks. The libraries are represented by different colors and styles:
- **zmq**: Blue dashed line
- **lru**: Green solid line
- **weighted**: Red dashed line
- **twisted**: Black solid line
- **sent**: Blue dotted line

The x-axis represents the number of tasks, while the y-axis represents the number of tasks per second. The x-axis is logarithmic, ranging from 1 to 10,000 tasks, and the y-axis is also logarithmic, ranging from 1 to 10,000 tasks per second.
...and throughput
Multiple usage patterns

- Direct interface: explicit (and flexible) control of where things run.
 - Choice of blocking behavior up to the user.
- Task interface: load-balanced (with flexible scheduling policies)
- Data push/pull, scatter/gather.
- Decorators that encapsulate many common patterns
- Informative exception propagation
- Explicit node-to-node communication:
 - MPI-style tasks
 - ... without all the pain of MPI.
Neat trick: DAG dependencies

A simple DAG example

In [2]: G = random_dag(32, 128)
In [3]: jobs = {}

in reality, each job would presumably be different
randomwait is just a function that sleeps for a random interval
In [4]: for node in G:
 ...: jobs[node] = randomwait

In [5]: c = client.Client()

In [6]: results = {}

In [7]: for node in G.topological_sort():
 ...: # get list ofAsyncResult objects from nodes
 ...: # leading into this one as dependencies
 ...: deps = [results[n] for n in G.predecessors(node)]
 ...: # submit and store AsyncResult object
 ...: results[node] = client.apply(jobs[node], after=deps, block=False)

In [8]: [r.get() for r in results.values()]
Matplotlib: 2d plotting
Matplotlib: 3d plotting
Matplotlib

- Great quality plots on disk (png, pdf, etc): what Sage uses
- Familiar, high-level API (to those who know matlab).
- Local plotting with multiple GUI toolkits
- Interactive data navigation in plot windows
- GUI toolkit-independent event handling
- \texttt{\LaTeX} support, without the \texttt{\LaTeX} dependency
- Embeddable in GUI apps with any toolkit.
MayaVi: sophisticated data visualization

- Free, easy to use scientific data visualizer.
- Heavy lifting of OpenGL-based rendering: VTK (a C++ library).
- A very good example of how to properly use Python:
 - A standalone GUI program...
 - also a library
 - Python: flexibility.
 - C++: performance (hardware-accelerated OpenGL)

The punchline: fully programmable visualization, with builtin access to all kinds of numerical (and other) libraries from within the viz tool.
MayaVi: 3d visualization (VTK)
FluidLab: a MayaVi based CFD visualization tool
Sympy: symbolic and multiprecision computing

In [14]: dsolve(f(x).diff(x, x) + f(x), f(x))
Out[14]: f(x) = C₁ \cdot \sin(x) + C₂ \cdot \cos(x)

In [15]: zeta(4, x)
Out[15]: \zeta(4, x)

In [16]: zeta(4, 1)
Out[16]:
\[
\frac{4}{\pi} - \frac{\pi}{90}
\]

In [17]: Ylm(2, 1, theta, phi)
Out[17]:
\[
-\sqrt{30} \cdot \cos(\theta) \cdot e^{i \cdot \phi} \cdot \sin(\theta)
\]

In [18]: integrate(sin(x)**3)
Out[18]:
\[
3 \cdot \cos(x)
\]

In [19]: integrate(exp(-x**2)*sin(x))
Out[19]:
\[
\int e^{-x} \cdot \sin(x) \, dx
\]

In [20]:
Outline

1. Context
2. Scientific Computing
3. Core Scientific Tools
4. Growing rapidly
Workshops and Conferences

- Python Applied to Computational Chemistry and Molecular Modelling (June 2010, Barcelona), neuroscience (Trento, 2010; St. Andrews 2011), ...

 - SciPy 2011: Austin, TX. July 11-16..

- Scipy India: since 2009.
 - Scipy India 2011: December.

- Scipy Japan 2011
 - Being planned...

- At SIAM conferences (annual 2008 in San Diego, CSE 2009 in Miami)
 - CSE 2011 in Reno: standing room only, 5 sessions, many talks.

- Supercomputing'09: Python sessions, extremely well attended!

- Sage days: 29 workshops and counting...
Education

- Fossee India (multi-million US $ investment in Python-based educational software, course materials and training across all of India).
- SECANT: Science Education in Computational Thinking (NSF funded)
- Sage workshops: lots of students.
- MIT 6.0X series: now in Python.
- UC Berkeley: Python bootcamp/graduate course - Josh Bloom (Astronomy).

Computing in Science and Engineering (IEEE/AIP)

- Special issue in 2007: one of the most popular ever
- Special issue in 2011. Just came out!
Labs and industry

US Federal Labs
- LBL, LLNL, Los Alamos, Sandia, Oak Ridge, ...
- NASA (JPL, Hubble Space Telescope, ...)
- NIST
- NCAR
- NOAA

Industry
- Enthought (Austin, TX). Numpy, Scipy, Mayavi, scipy conference.
- The Python Academy: Germany, Euroscipy
- Visual Numerics: PyIMSL Studio
 (IMSL+Python+ipython/numpy/scipy/matplotlib)
- Google,
- Industrial Light and Magic,
- Disney,
- Financial world, ...

Lots more
- http://www.scipy.org/Topical_Software
In closing

Technical considerations

- A flexible, modern language
- A good tool for today’s numerical/scientific computing problems
- Excellent for problems where adaptive code/algorithms are needed.
- With a healthy ecosystem of interesting projects.

Social considerations

- Developed for and by researchers
- Do black boxes (matlab, Mathematica, etc) belong in research?
- Cost: an investment in open tools is an investment in students and researchers, not in paying for software licenses.

There’s a lot to do still
We hope many of you will contribute!
Thank you!

Questions?